ReentrantLock
# 一、概述
# 利用AQS自定义锁
/**
* 自定义锁
*/
class MyAQSLock implements Lock{
class MySync extends AbstractQueuedSynchronizer{
@Override
protected boolean tryAcquire(int arg) {
if (compareAndSetState(0,1)){
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
@Override
protected boolean tryRelease(int arg) {
// state变量是volatile 有写屏障 可以保证前面的对其他线程可见
setExclusiveOwnerThread(null);
setState(0);
return true;
}
@Override
protected boolean isHeldExclusively() {
return getState() == 1;
}
public Condition newCondition(){
return new ConditionObject();
}
}
private MySync mySync = new MySync();
@Override
public void lock() {
mySync.acquire(1);
}
@Override
public void lockInterruptibly() throws InterruptedException {
mySync.acquireInterruptibly(1);
}
@Override
public boolean tryLock() {
return mySync.tryAcquire(1);
}
@Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return mySync.tryAcquireNanos(1,unit.toNanos(time));
}
@Override
public void unlock() {
mySync.release(1);
}
@Override
public Condition newCondition() {
return mySync.newCondition();
}
}
# 二、源码
# 1.简介
ReentrantLock相关的继承关系图如图:
如下为ReentrantLock类的结构。与上面我们自定义的锁类似。实现了Lock接口,对外提供Lock接口的方法。有一个同步器属性,上锁、释放锁都是通过调用同步器的相关方法实现的。构造时,同步器可以选择公平锁/非公平锁,它们都继承了抽象父类Sync,而Sync又继承了AQS。
抽象类AQS维护了等待队列,而ReentrantLock只需要定义共享资源的获取与释放的方式。
package java.util.concurrent.locks;
import java.util.concurrent.TimeUnit;
import java.util.Collection;
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
/** Synchronizer providing all implementation mechanics */
private final Sync sync;
/**
* Base of synchronization control for this lock. Subclassed
* into fair and nonfair versions below. Uses AQS state to
* represent the number of holds on the lock.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
/**
* Performs {@link Lock#lock}. The main reason for subclassing
* is to allow fast path for nonfair version.
*/
abstract void lock();
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
final ConditionObject newCondition() {
return new ConditionObject();
}
// Methods relayed from outer class
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
final boolean isLocked() {
return getState() != 0;
}
/**
* Reconstitutes the instance from a stream (that is, deserializes it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/**
* Sync object for fair locks
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
public void lock() {
sync.lock();
}
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.release(1);
}
public Condition newCondition() {
return sync.newCondition();
}
public int getHoldCount() {
return sync.getHoldCount();
}
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
public boolean isLocked() {
return sync.isLocked();
}
}
# 2.构造方法
- 无参构造器:创建的是非公平锁,同步器初始化为NonfairSync。
- 有参构造器:true创建的是公平锁,false创建的是非公平锁。
公平锁,会降低并发性能,而非公平锁性能更好,因为可以减少唤醒线程的开销,整体吞吐效率更高,但可能造成饥饿
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
# 3.非公平锁实现
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
# 3.1加锁
如果竞争成功,直接占有锁。如果失败,调用父类AQS中的acquire()方法
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
// addWaiter构造队列 把头结点
acquireQueued(
addWaiter(Node.EXCLUSIVE), arg)
)
// 如果在acquireQueued()被中断过 这里自己产生一个中断
selfInterrupt();
}
前面的tryAcquire()在NonfairSync中有重写,即nonfairTryAcquire()(这个方法就是ReentrantLock中的tryLock()的实现)
对于非公平锁:
如果没有加锁,会直接CAS尝试加锁
如果锁已经被持有,会看是不是自己持有了锁,如果是,则累加state,即发生了锁重入
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
如果tryAcquire()加锁失败,会addWaiter(Node.EXCLUSIVE), arg),创建一个独占的节点放到队列尾部
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 自旋 空队列则CAS地初始化队列,队列有节点就把节点挂到队列尾部
enq(node);
return node;
}
把当前节点入队列之后,执行acquireQueued():
// 以独占、不可中断的模式 获取队列中的线程
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
// 获取自己的前驱节点
final Node p = node.predecessor();
// 如果前驱节点是头结点 自己是第二个节点,那么可能有机会获得锁
// 尝试获取锁(非公平锁直接获取,公平锁会...)
if (p == head && tryAcquire(arg)) {
// 获取到锁 把当前节点设为头结点,去掉之前的头节点
setHead(node);
p.next = null; // help GC
failed = false;
// 如果在shouldParkAfterFailedAcquire()保存过中断信号 这里返回有中断 否则直接返回没有被中断过
return interrupted;
}
// 如果自己不是第二个节点 或者自己虽然是第二个节点,但是由于非公平锁,新来的线程可以不入队列,直接获取锁,所以这里可能被其他线程抢先了
// 将前驱节点waitStatus改为-1,即会唤醒后继节点
if (shouldParkAfterFailedAcquire(p, node) &&
// park 阻塞、检查中断标志 如果被中断了,保存下来,后面获取到锁之后会返回中断标志,后续自行产生一个中断标志
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
# 3.2释放锁
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
// 判断头节点不为空,状态不为0
if (h != null && h.waitStatus != 0)
// 唤醒后继节点 找到队列里离head最近的一个没取消的node,unpark恢复其运行
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
// 没拿到锁 释放锁会抛异常
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
// 如果完全释放了 直接把锁的持有者置空
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
// 部分释放 则设置新的重入锁次数
setState(c);
return free;
}
# 4.公平锁实现
相比于非公平锁,公平锁在获取锁之前,会检查队列中有没有线程在等待,如果有的话不会去获取锁 ,而是会入队列
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 先判断是否需要排队
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
hasQueuedPredecessors()
public final boolean hasQueuedPredecessors() {
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
true:需要排队
- h != t 且 (s = h.next) == null:至少两个节点,且头结点后继节点为空。可能发生在第一个线程正在尝试获取锁失败,正在初始化同步队列时,tail = head还没有赋值成功,已经有另一个线程准备进来,所以需要排队。
- h != t 且 (s = h.next) != null 且 s.thread != Thread.currentThread()至少两个节点,且头结点的后继节点不是自己。此时轮到头结点的后继节点获取锁,当然需要排队
false:不需要排队
- h == t 直接短路,没必要判断是不是两个都假队列为空或只有一个节点,说明前面没有其他线程排队
- 前面为真 ,后面为假:(h != t)且 (s = h.next) != null 且 s.thread == Thread.currentThread(),至少两个节点,且头结点有后继节点,且后继节点就是当前线程。说明已经轮到自己去获取锁了,无需排队
注意,这里 h != t 都不是绝对代表至少两个节点,当初始化队列时,设置head与tail指向head节点不是原子操作,可能出现刚设置head,但tail = head还没有赋值成功,此时tail = null,即h != t;
if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; }